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Hartree total energy is larger by as much as 38.53 Ry 
for plutonium. 

Total energies calculated from the relativistic solu
tions are of about the same magnitude as those obtained 
from the nonrelativistic solutions at low values of 
atomic number, but are significantly larger at high 
atomic numbers. This difference increases uniformly 
with increasing atomic number from 1.06% for ger
manium to 9.02% for plutonium. 

I. INTRODUCTION 

IN atomic helium the only electronic states of prac
tical importance are those for which at least one 

electron is in the ground state. Thus, as is well known,1 

the Pauli antisymmetry principle is satisfied for wave 
functions for which either the spatial function is sym
metric and the spin function is antisymmetric or for 
wave functions having antisymmetric spatial functions 
and symmetric spin functions. These two possibilities 
lead to two term schemes, the former giving the singlet 
system whose lowest member is 1 *5o while the latter 
leads to the triplet system whose lowest member 
is235i. 

Inasmuch as the 2 85i triplet state lies above the 
ground state by 19.8 eV and transitions to the ground 
state 1 ^o are rather rigorously forbidden, both by the 
orthogonality of the spin functions and by the sym
metry differences of the spatial functions, this meta-
stable state has of late been the subject of a number of 
investigations. Experimentally this state is an attractive 
metastable system to study as it is possible to obtain an 
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appreciable concentration of these metastable atoms 
under experimental conditions. From the point of view 
of the theorist it is attractive as an approximate wave 
function and triplet state energy are obtained in which 
the energy is a rigorous upper bound to the true triplet 
energy simply by requiring that the spatial part of ones 
variational wavefunction be antisymmetric. 

To mention just a few of the recent papers on 2 3,Si 
helium, Pekeris,2 Hart and Herzberg,3 Davis,4'5 and 
Traub and Foley6 have all made accurate variational 
calculations of the energy. Hughes7-9 and his co
workers have made rather definitive experimental and 
theoretical studies of the magnetic moment in this state. 
Finally, Benton, Ferguson, Matsen, and Robertson10 

have recently made a number of measurements of the 
cross sections for de-excitation of the metastable atom 
by collisions with other atoms. 

2 C. L. Pekeris, Phys. Rev. 115, 1216 (1959). 
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7 V. Hughes, G. Tucker, E. Rhoderick, and G. Weinreich, Phys. 
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9 V. Hughes, G. Tucker, E. Rhoderick, and G. Weinreich, Phys. 

Rev. 112, 627 (1958). 
10 E. E. Benton, E. E. Ferguson, F. A. Matsen, and W. W, 
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The magnetic susceptibility of the 2 35i state of helium and some like ions is computed using a thirty-five 
term wave function of the type originally proposed by Hylleraas and Undheim. It is found that it is possible 
to obtain highly accurate values for the magnetic susceptibility using this wave function if the parameters are 
accurately determined. Finally, an argument is given which suggests that the magnetic susceptibility ob
tained in the present work is accurate to at least five significant figures. 
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The principal aim of this work is to obtain accurate 
values for the magnetic susceptibility of this metastable 
state. Calculations are presented for helium and for a 
number of ions in the isoelectronic series. To be suc
cessful in this task it is found that an accurate wave 
function must be used, and that the linear and nonlinear 
parameters be known to high accuracy. I t is for this 
reason that a rapidly converging type of wave function 
is obtained and the calculations are performed using a 
large number of significant figures (12 places). 

THEORY 

The diamagnetic susceptibility of the 2 zSi metastable 
state is computed in the usual way from11 

Ne2 r Ne2 

XD = / ^o*(E ^ 2 ) W r = (ri2+r2
2)av (1) 

6mc2 J i 6mc2 

and the paramagnetic susceptibility from 

XP=NJ(J+l)gW/3kT. (2) 

Since the electrostatic fields exerted by single nuclei 
are spherically symmetric, the Van Vleck paramagnetic 
terms are zero. Here \po is the solution of the field-free 
Schrodinger equation, and N, J, g, juo, k, and T all have 
their usual meanings.12 

The particular choice of the wave function T̂O was 
decided by the requirement of rapid convergence to the 
experimental energy for the state as mentioned earlier. 
A comparison of the results in the papers referenced 
earlier13 seemed to indicate that the type of wave func
tion utilized by Hart and Herzberg, and Traub and 
Foley converged more quickly than either the con
figuration interaction approach, used by Davis, or the 
function developed by Pekeris. This latter, though 
yielding accurate results, required over 200 terms to 
give convergence of the energy calculations to seven 
significant figures. Thus, the wave function used here is 
of the form proposed by Hylleraas and Undheim,14 and 
is given by 

N sinh 
$=* L cie--{kcsl2)¥li+mi+ni)sliu'mitni Qkt), (3) 

*-i cosh 

where k is a scaling parameter, c is the other nonlinear 
parameter, a are linear variation coefficients, h, m^ %i 
are the integral powers whose values will be chosen 
later, N is the number of terms in the wave function, 
which is taken up to a maximum of 35, s=r1+r2i u=ru, 
and t—ri—r2. 

The hyperbolic functions sinh (§&/), and c o s h ( ^ ) are 

11 J. H. Van Vleck, The Theory of Electric and Magnetic Sus
ceptibilities (Oxford University Press, New York, 1932), pp. 206-
226. 

i2 See Ref. 11. 
" See Refs. 2-6. 
" E. A. Hylleraas and B, Undheim, Z, Physik 65, 759 (1930). 

chosen according to whether tii is even or odd so as to 
maintain the odd symmetry of the wave function. 

The major computing effort here lies in minimizing 
the energy of the wave function [Eq. (3)] with respect 
to both of the nonlinear parameters c and k, A signifi
cant reduction in the computing time required for this 
task is achieved by considering k to be a scaling factor. 
Thus, since the field free Hamiltonian Ho contains only 
homogeneous operators T and V, one can minimize the 
energy on both c and k with recalculation of the energy 
integrals needed only for various values of c. This is 
because the dependence of these integrals on k is 
particularly simple. 

Thus the wave function [Eq. (3)] is written as 

\p (s,u}t)=(f) (ks,ku,kt), (4) 

where <l>(s,u,t) is given by 

& sinh 
0 ( J , « , O = E Cie-^csl2)sliumnni (It). (5) 

*=! cosh 

Then, in atomic units, the kinetic energy operator T 
is — JVI 2 —|V 2

2 and the potential energy operator is 
V= — (Z/ri)— (Z/> 2)+(l / r i 2) so that one obtains for 
the energy 

E--

where 

/ 
f*(s,u,t)(T+VW(.s,u,t)dT 

k*M-kL 

\//*(s,u,i)ip(s,u,t)dT 
N 

•, (6) 

and 

1= \4>*(syu,t)T4>(s,u,t)dT, (7a) 

L= H>*(s,u,t)V<t>(s,u,t)dT, (7b) 

N= [<t>*(s,u,t)<l>(s,u,i)dT. (7c) 

The L, M, N can be expanded as follows: 

i,3 

1VL / f Ci Cj-L/ijy 

N=Y.ci*CiNti, 

(8a) 

(8b) 

(8c) 

where 

Mij^ I 4>i*(s,u,t)T4>j(s,u,t)dT, (9a) 

Lij= I <t>i*(s9u,t)V4>i(s,u,t)dT, (9b) 

Nij= / <t>i*(s,u,t)<f>j(s,u,t)dT, (9c) 
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and when the coordinates s, u, t are used to describe the we need only compute the integrals 
coordinate system, these functions become 

ds du dt[erC8slumtncosht], (13a) 
^•y-^7r-i a*, au J Jo Jo 

Jv JO .00 -* -w 

B= / dsl du dt[e-C8slumtn$mhf\, (13b) 

x [ dt^Zsu^^-Z^-^^A, (10a) ° ° ° 
J 0 z*00 /•* /*w 

Z>= / dsl du dt\jrC8slumtn~\. (13c) 
r00 r s cu J J I 

Nij=2^\ ds du dtiuis2-?)^*^}, (10b) Then 
Jo J° FINT=w2(A-D), (14a) 

FJNT=w2(A+D), (14b) 

FKNT=TT2B. (14c) 

o ./o ./ o 

dsl du dt\u(s2-t2) 

[ d<j)i d<j)j d<t>i d(j)j d<j)i d(t>H Detailed formulas relating the auxiliary functions 
1 1 p ^ (14)] to the matrix elements Mij, Lij, and Nij are 

ds ds du du dt dt J given elsewhere.15 

Solution of the secular equation 
"a<j>i o<t>j a<t>i d^f1 

rd<j>i d<t>j d<f>i d<j>f\ 
+2s(u2-t2)\ + DETl&Mij-kLij-ENijl = 0 (IS) 

L ds du du ds J 

rd^idfa dfc d<j>n) 
+2t&-tt)\ - + — — . (10c) 

L du dt dt duJ) 

leads to a value for the energy E and then the set of 
"d<j>i d<t>j d<t>i d</>j~\} simultaneous equations resulting from Eq. (6) can be 

solved for the coefficients d. 
The integrals involved in Eq. (13) were solved by 

Inspection shows that each of the integrals in Eqs. ^ ^ g ^ f f ^ S f f i n i n f i n i t e s e r i e s ^ «> a n d 

(10) will reduce to a sum of integrals of the three types 

FINT=2w2 dt[e~C8slumtn coshf] 
/»00 /*8 /*U 

r f8 A= ds du t 

/ dsl du J0 JQ J0 

(2i+m+n+l+2)l 

X / dtZe-C8slumtnsmh2(it)'], (11a) i=o(2i+n+l)(2i+m+n+2)(2i)lc(2i+l+m+n+*)' 
Jo (16a) 

FJNT=2w2l dsl du B==z I ds I du I dt£e~C8slumtn sinht] ^=2TT2( dsf du B==j ds\ duj 

r _ - (2i+l+m+n+S)l 

X dtZe-°8siun»cosh2(m, (Hb) ~ &(2i+n+2)(2i+m+n+3)(2i+l)k*«^^' 
Jo (16b) 

FKNT=2«* f ds f du C= f° ds f du f 
J* Jo Jo Jo Jo 

dt[e~C8slumtn'} 

r (l+m+n+2)l 
X / dt[e-C8s lu™tn sinh (it) cosh (it)'], (1 lc) = , (16c) 

Jo (ni+n+2)(n+l)cl+m+n+* 

when the wave function is as in Eq. (7). Then, since t 0 t n e computational limits of convergence of the 
computer. 

sinh2(|/)== | (cosh/— 1) > (12a) The method employed for optimizing the nonlinear 
parameters c and k, so as to minimize the energy, con-

cosh2 &) = | (cosh/+1), (12b) 

. , / , N T / i x I . , ,*„ s 15 J. T. McMullan, MA thesis, The State University of New 
Sinh (it) cosh (p) = f s inh / , (12c) York at Buffalo, Buffalo, New York, February 1964 (unpublished). 
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TABLE I. Six-term energy results. 

Ion 
No. of terms 
Energy in a.u. 

Power of 
S U T 

0 0 
1 0 
0 0 
0 1 
0 1 
1 1 

0 
0 
1 
0 
1 
0 

He i 
6 

-2.1752033 

5.9307974X10"1 

-3.1679337X10"1 

-3.0595637 XIO"1 

-8.9885579X10-2 

2.3859716X10"2 

-1.4028536X10-2 

Li II 
6 

-5.1106952 

1.7194193 
- 8.929393 lXlO"1 

- 8.6475907 XIO"1 

-1.7585617X10"1 

5.4722199X10-2 
-3.0478014X10-2 

Be in 
6 

-9.2971275 

Eigenvector in units of #o/4 

2.9002536 
-1.4988541 
-1.4525374 
- 2.283 7918X10"1 

7.5427172X10-2 
-4.0786586X10-2 

B i v 
6 

-14.733853 

3.9856805 
-2.0542439 
-1.9936387 
-2.5729235X10-1 

8.7553838X10-2 
-4.6222169X10-2 

C v 
6 

-21.420708 

4.9465544 
-2.5435356 
-2.4730489 
-2.7100190X10-2 

9.4073133X10-2 
-4.8840536X10-1 

sists in calculating the energy for three values of one of 
the parameters holding the other one fixed. These three 
energy values are then fitted to a parabola.16 Then the 
value of the parameter being varied which minimizes the 
parabola is taken as the new value of this parameter. 
Then the other parameter is varied in the same manner 
while the improved one is held fixed. 

Thus, if 7 is c or k the curve of E versus 7 is repre
sented by 

E(y) = E(yo)-
E(7 i ) -E(7o ) 

A 
- ( Y — T O ) 

£ ( 7 2 ) - 2 E ( 7 i ) + £ ( T o ) 

where 
2A2 

A = 7n— Yn-1. 

( Y - Y O ) ( Y - Y I ) , (17) 

(18) 

On requiring dE/dy — 0 we obtain 

7o+7i A [ £ ( T I ) — - E ( Y O ) ] 

E(y0)-2E(yi)+E(y2) 
(19) 

The new parameter 7* is generally better than any of 
the other three. 

The method then is to choose a value 71, for the non
linear parameter and a value for the optimization in
crement A. Then 70 and 72 are calculated from Eq. (18) 
and 7* is obtained from Eq. (19). The whole process is 
repeated as many times as necessary with gradual re
duction of the optimization increment until the required 
accuracy is obtained. 

Having obtained the wave function in this way, the 
diamagnetic susceptibility is computed from Eq. (1) by 
using the relation 

ri2+r2
2=Hs2+*2). (20) 

Hence 
( N N r r 

<ri2+*-22>av=27r2£-2 E E Ci*cs Idsldu 

X [dtfyi* u(s*-t*)<t>j-] . (21) 

16 R. P. Hurst, J. D. Gray, G. H. Brigman, and F. A. Matsen, 
Mol. Phys. 1, 2, 189 (1958). 

Finally, using this result the susceptibilities are ob
tained from Eqs. (1) and (2). 

RESULTS AND DISCUSSION 

The computed values for the energy of the 2 zSi state 
of He 1, Li 11, Be 111, B iv, and C v using the six-term 
wave function are as shown in Table I and those for 
He 1, and Li 11 using the thirty-five term wave function 
are given in Table II . In both cases the coefficient as-

TABLE II . Thirty-five term energy results. 

Ion 
No. of terms 
Energy in a.u. 
Experimental 

Power oi 
5 

0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
2 
2 
2 
3 
0 
0 
0 
0 
0 
1 
1 
1 
1 
2 
2 
2 
3 
3 
4 

U 

0 
0 
0 
1 
1 
1 
0 
0 
1 
2 
2 
3 
0 
0 
1 
2 
0 
0 
1 
0 
0 
1 
2 
3 
4 
0 
1 
2 
3 
0 
1 
2 
0 
1 
0 

T 

0 
0 
1 
0 
1 
0 
2 
3 
2 
0 
1 
0 
1 
2 
1 
0 
0 
1 
0 
0 
4 
3 
2 
1 
0 
3 
2 
1 
0 
2 
1 
0 
1 
0 
0 

He 1 
35 

-2.1752288 
-2.17522937 

Li 11 
35 

-5.1107268 
-5.1107 

Eigenvector in Hylleraas units of #o/4 

4.7515763X10"1 

-2.1297433 XIO"1 

-2.3595717X10-1 

-5.4054036X10-2 

2.2244468X10-2 

-3.1617821X10-2 

7.4304450X10-3 

-1.1314525X10-4 

-1.4770588X10-3 

6.2799498X10-3 

-6.9498491 X10~4 

-1.5902550X10-3 
-9.7955047X10-3 

1.5904228X10-3 
2.8108215X10-3 
3.9112128X10-3 

-4.6895605X10-3 
-1.0306888X10-3 
-2.9498338X10-3 
- 2.0583545 XIO"4 

-1.3331422X10"5 

8.5168555 X10~5 

-4.4517142X10"5 

1.3483542 X10~4 

4.7905459X10"5 

-2.3735311X10-6 

-7.1967346X10"5 

- 3.4457473 XIO"4 

-7.1356653 XIO"5 

-3.0739998X10-6 

3.8242851 X10"4 

1.5833393X10-* 
-1.0637398X10"5 

-3.6033713X10-5 

-3.7331584X10-5 

1.3278706 
-6.4743414X10"1 

-6.6060270X10-1 

-1.2200908X10-1 

4.5255803X10-2 

-4.9843953X10-2 
6.1758189X10-3 
4.8014926X10-4 

-2.0103314X10-3 
6.4228812X10-3 

-3.6682981X10-3 
-8.6006201X10-3 
-3.5915761X10-2 

3.8458913X10-3 
8.5321579X10-3 
2.4434584X10-2 

-2.3866696X10-2 
-2.5018333X10-3 
-2.1956618X10-2 

4.4842797X10-3 
-4.9063179X10-* 

2.1854306X10-4 

-1.9473620X10-4 

1.9130504X10-4 

-1.0589895 XIO"4 

-1.0808635 XIO"4 

-8.3084609X10-5 
-2.2965488X10-4 

1.2571919X10-3 
-2.1771461X10-6 

1.7749086X10"4 

-2.8356107X10-3 
6.3008506X10-5 

2.2570131X10-3 
-6.7572069X10"4 
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sociated with each term in the expansion is listed. The 
numbers on the left of both Tables I and I I are the 
powers of s, u, and t used in the wave function. These 
powers were chosen in a systematic manner in that the 
sum of I, m, and n is a constant / , i.e., l+m+n=I. On 
including all terms for which / = 0 , 1, 2, 3 and 4 the 
thirty-five term wave function is obtained. 

In Table I I I are listed the results for the magnetic 

TABLE III. Magnetic susceptibility results (at 300°K). 
(In each case Xp=3343.72Xl0~6 cm3/mole.) 

Ion 

Number 
of terms 
in wave 
function 

<n2+r22)av 
in (au)2 

-XcXlOe 
in cm3/mole 

X=Xp+XD 
in cm3/mole 

He 

Li+ 

B e + + 

B + + + 
C++++ 

6 
35 

6 
35 

6 
6 
6 

22.8235650761 
22.9291760176 

7.54233220883 
6.91934660531 
3.76318283315 
2.25588738761 
1.50314828011 

18.0838433 
18.1675222 

5.97603191 
5.48242042 
2.98169053 
1.78741200 
1.1909926 

33.25636X10-4 
33.25552X10-4 
33.37744X10-4 
33.382380X10-4 
33.4073800X10-4 
33.419320X10-4 
33.425900X10-4 

susceptibilities. The value of g used is that obtained by 
Hughes et alP 

I t is interesting to compare the energy value obtained 
for helium with that obtained by other authors. These 
are shown in Table IV. A rough interpolation between 
Pekeris'18 energy results, as additional terms are added, 

TABLE IV. Energy comparison. 

Author 

Pekeris 

Davis 

Traub & Foley 
Hart & Herzberg 
Present work 

17 See Refs. 7, 8, and 9. 
18 See Ref. 2. 

No. of 
terms 

125 
252 
400 
715 
80 
80 
12 
20 

6 
35 

Energy in a.u. 

-2.17522097961 
-2.17522925888 
-2.17522937680 
-2.17522937822 
-2.1752246 
-2.1752259 
-2.1752176 
-2.1752192 
-2.17520330532 
-2.17522877618 

seems to indicate that the present 35-term function is 
equivalent in accuracy to about 220 terms in the 
Pekeris wave function. 

TABLE V. (fi2+r2
2)av in a.u. 

Author 
No. of 
terms W+ffl 

Pekeris 

Present work 

125 
252 
444 
715 

3 
6 

35 

22.8746354 
22.9270248 
22.9286082 
22.9286426 
24.38180716 
22.8235650761 
22.9291760176 

Pekeris has also reported a number of values for the 
expectation value corresponding to each of his various 
wave functions and these are shown in Table V together 
with the helium values in the present work using 3, 6, 
and 35 term functions. We can immediately notice that 
the value obtained from our 35-term function differs 
from the Pekeris 715-term value by 0.0005334 au 
whereas the Pekeris 252-term value differs from the 715-
term value by —0.0016178 au. Thus it seems possible 
that, even though the Hylleraas wave function with 35 
terms is less accurate than the 252-term Pekeris function 
for the short-range Hamiltonian operator, it may be 
more accurate for the long-range operators such as r2. In 
any event it is gratifying to note that the two wave 
functions which differ so much in the manner in which 
they are constructed and in the number of terms they 
contain give agreement in the computed ri2 values to 
five places. I t is, therefore, highly likely that the 
susceptibility is now known to five places. 

Finally, it is of interest to note that when the com
putation of the energy was performed using the 35-term 
function and 8-place arithmetic the computed result 
was below the experimental value, showing that the 
round-off error inherent in these long computations had 
become a limiting factor. Thus any extension of this 
type of work must be performed on a machine with a 
long word-length. 


